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The study is concerned with the propagation of elastic waves produced by a moving
source, This topic has been the subject of a series of papers,e. g. [l to 3]. In contra-
distinction to the above cited works which study the effects of 2 moving point source,
the present investigation deals with the effects of a source applied to a uniformly ex-
panding circular region on the boundary of an elastic half-space, The resultant dis-
placement field is divided into components corresponding to longitudinal, transverse,
head, Rayleigh and other waves, Each of these waves is investigated in the prefrontal
regions, and the connection between the character of the singularity and the 1dation-
ship between the velocity of propagation and the velocity of the source is explained,
The results obtained for the field of a moving source are compared with the cases of
point and distributed stationary sources,

In contrast with [1 to 3], where the velocity of source motion is assumed to be lower
than the velocity of propagation of Rayleigh waves, herein no limitations are placed on
the velocity of motion, In studying the field, particular attention is paid to the cases
in which the velocity of the source coincides with the velocities of propagation of
longitudinal, transverse and Rayleigh waves, If the velocity of motion is equal to the
Rayleigh velocity, resonance of surface waves takes place. Thereupon, the Rayleigh wave
changes form and propagates without attenuation, If the velocity of motion coincides
with either the longitudinal or transverse wave propation velocity, the form and atten-
uation of the waves retain the same character as in the case of a stationary source,

1, Consider a cylindrical coordinate system &2 in a homogeneous elastic half-
space z > 0, characterized by density P and Lamé constants A and M. The region
is at rest at £ < 0, and subjected from the time ¢ = O to the action of a source applied
to a circular region which is uniformly expanding with time and for which 77 = U ¢
and 2= (0. The loading due to this source is given by the relations

t,, = — (S»—K-f;ﬂ e (), t,, = tg=0 for =20 (1.1)

Here I,,, !, and {, are components of the stress tensor, U is the velocity of the
motion of the source, and 8(Xx) and € () are the Dirac and Heaviside functions, respect-
ively. .

The resultant displacement field u = gr;  wk, is defined by the known LameEqgs,
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pdtu / 812 = (A + 2p) grad div u —p rot rot u (1.2)

with the initial conditions
u = ll. _ O for t = (1.3)
The boundary conditions are given by (1.4)

ow t)
(gz+%§“> 0, P"(a )+(7"+2);,.| 6—#— e(t) for z=0
The solution of the problem formulated in (1, 2) to (1, 4) ﬁlay be obtained, as in

[4 and 5], by means of Fourier-Bessel and Laplace transformations, We omit intermedia-

ate formulas, and write merely the end results
ioo

<) o--ioo
w.—.sm S W (k, m) exp =+ LU
- (1.5)

SJ‘('" L Q (k, n)exp 1 dn

0 G—1c0

W= s 2e k), Q = o (get —2oPe)  (1.6)
=VYI+7, B=VI+n, «x=Vi@+b?, g=2+7

R=gt—4aB, a=Vph+2u) " b=Vpp?t, r=ab? (L7)
which define the displacement vector &. In order that the radicals X, 8 andQ.be
single ~valued, branch cuts originating at the bran¢h-points <+ iby, - | and 4= ip™*
are inwroduced in the left half-plane, and the values of the radicals are fixed by the
conditions % > 0, f > 0 and ¢ > 0 for n> 0.

Before proceeding with the investigation of the solutions (1, 5) to (1, 7), let us obtain
the displacement field in the same half-space for two other types of sources

tzzz_ﬁ(r)g(t), tu.=tz9=0 for z=0 (1‘8)
tu=——6—(r—t)—, t,=1lps=0 for 2=0 1.9

It is readily seen that the first of the above sources represent that particular case of
(1,1) for which the veloci{y of motion is zero, Hence, the displacement field produced
by the source (1, 8) is given by Formulas (1, 5) wherein

W — P‘;]LR(ge—kzam 2ek3),  Q — E%F(

To obtain the displacements resulting from the action of (1, 9) we need merely note

the relation

ge ¥ — 2aBe-B)  (1.10)

D = pim [ =202 ] (1.11)

r D00 r
between the functions defining the sources in (1, 1) and (1, 9), Utilizing (1.11), we find
that the desired displacements are also expressible by (1, 5) wherein
= —kzx ___ Do-kz8 — 1 —k z: .
H M (gek2* — 2ek28), = pb—R(ge kze___ Dogfek8) (1.12)
The displacement field (1. 5) and (1, 10) for a stationary point source (1, 8) was ex-
amined in detail in [4), using exact and asymptotic methods, Similar methods may be
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used to study the displacement fields (1. 5), (1. 6) and (1, 12) for a moving source (1. 1)
and a stationary distributed source (1, 9), Since the field of a moving source is of great~
est interest, our attention will be mainly directed to its investigation, In addition to ex~
amining the influence of the source motion on the propagation of longitudinal, transverse,
head and Rayleigh waves in the half-space, we will also study waves which propagate
with the velocity of the source,

2, To investigate the displacement fields (1, 5) and (1, 6) let #and § be written as

W = Wpe-kza + Wse‘k:ﬂ, () — Qpe~km + (;)Se—kza (2.1‘)
where, from (1, 6),
_ % _ _ _& ___ 2aB
[’Vp—‘ P-RK ’ Ws'* HR% ’ Qp_‘ HR% L) Qs—*—"uR% (2,2)
Corresponding to the decomposition of functions in (2. 1) into two components, we will
write the field u as the sum
u = u, + u, (2.3)
Here the components ¢, and w,; of the vector u, ({ = p, s) are given by
+ i00
Jo(kr)dk
= S 2\ Waexp [kfi ()] dn (2.4)
0 c—zoo
Cnnae T
q “5 b S Quexp [kf; ()] dn
0—1.00
fr()=itn]b—za, fs(m)=1in/b—2} (2.5)

The quantities w, and g, will be studied by asymptotic methods, The inside, Meliin
integrals will be evaluated by the method of steepest descent in the region ¢ > az
(£ = p) or t>> bz (I = s), where the integrals are not identically zero.
In this connection, let us examine the stationary contours A, and Ay of the phases of
functions (2, 5), The contours A, and A, pass through the saddle points

:}: it _ + it
+Mpo = TVE e + Mo = Ve (2.6)
satisfying the conditions
Im f; (n) = Im fy (£ M), Ref,(n) << Ref; (£ o) (2.7)
intersecting the imaginary axis at the points
— V12— bis?
£ M = i—ll/%—ﬁ“ , Mg = :t—l—tt—z— (2.8)

and possessing symmetry with respect to the real axis. Possible arrangements of station-
ary contours in the upper half-plane are shown in Figs. 1 and 2,

In order to go from the Mellin contour in (2, 4) to the stationary contour A; it is nec-
essary to examine and take into account the singularities of the integrand in the region
between the two contours, In that region, there can only be the branch points

+ i, -+ i1, + ibvand the poles -+ it satisfying the Rayleigh equation 7 =0.
It is easily seen that the noted singular points fail to fall in the region between the two
contours only if they are located on the imaginary axis between the points M6 and myy.
Thus, in passing from the Mellin contour to the stationary contour it is pecessary to take
into account singularities at the point 4 i, -+ iy, +-ibvand 4 itp if these lie out~
side the interval (-7, + np) on the imaginary axis, These singularities are taken
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into account by evaluating the residues and the integrals along the branch cuts, In order
to utilize the method of steepest descent in evaluating the integrals, we introduce branch
cuts from the points 4 i, + "t and - ibv, along the lines

tmfy ) = Im f; (=9, Imfy(m)=1Imf (+ "), Imf(m) = Imf (+ibo) (2.9)

in the left half of the 1)~ plane (Figs, 1 and2), For convenience, the contours encom-
passing these cuts will be designated by A, };,.{ and A, respectively, Based on these
investigations, the displacement fields (2, 4) and (2. 2) may be represented by

Uy == Uy, b U, U, -4 Uyps  Ug = Uy, + gy Uy 8y (2.10)
where the components of the vector w,, Uy, “:pv’. u, and u;, may be expressed in
terms of Fourier~Bessel integrals obtained from the integrals along the respective contours
My My Apys Ay and from the residues at the point - it,. Here we should note that
the vectors u,, Up,» Uy and u;p vanish if the corresponding singularities + ibv,
+ iy, +i and 4+ ity lie inside the intervals (- "y, - "o) on the imaginary axis,
1

Fig. 2,

3, In order to investigate the singularities of the vector fields uy, Upg, Uy, and

Uy let us divide the range of integration with respect to 4 into two intervals: [0, %, ]
and [#4,,»), Since the integrands in the integrals along the contours Mgy Ap, Ayy and

Ayp  are regular functions over the interval [0, %, ], integration over the finite interval
[0, 75,1 is of no interest, All singularities of the vectors U, Uy, Uy, and w,; will
be contained in the integrals over the range [4,,), The value of %, must be chosen
that kor>1, Feotb™ > 1 @3.1)

Under these conditions, the Bessel functions J, (%7) and 4 (%7 ) may be replaced by
their asympotic forms

Jo (kr) ~ V2 [nkr cos (kr — Yjgnm — 1/ gm) (3.2)

and the integrals along A;,, Ay, Ay, and A, may be evaluated by the method of steepe
est descent, Application of these methods to the evaluation of expressions typified by
Uio, Upy Uy and uy, is described in detail in [4 and 5], Hence, we will confine
ourselves here to obtaining the leading asympotic terms in the nonanalytic portion of
the field in the neighbourhood of the front,

The wup,, wave, The components Gpv, Wy,5 Of the vector m,, under conditions
1npg]<bv or.z <ty v* — a™% are given by

g (ibv) Oosink(r——vt+2 Vit —1) dk
TR (ibv) Vborf, (ibv) 5 k

Wpy = YV a? —1 gy, (3.3)

Qpy =
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and have singularities only on the surface
ot = s a?® — 1 + r (3.4)

This conical surface makes an angle Qg =sin -t (az»)'l
with the plane 2= The trace of the surface is repre-

sented in Fig, 3 by the segment A5, In passing through
the surface (3, 4), the displacement components (3, 3)
experience jumps, so that the integral
i dk
5 sin kr ——
Ko
has a jump equal to 7 at x=Q
If one of the relations [n p, | > b0t
az <tV 1 — a?
is satisfied, then both components ¢, and w,, are
represented by integralsoo of the type

Fig. 3.

\ ; — dk
S exp [ik(r — ot) — kz V1 — a%p?) —
%, 17 (3.5)

which differ from the integrals in (3, 3) by a factor exp (— kz Vi —a%A). As a result
of this factor, the wave represented by the vector wup,, is attenuated exponentially with
an increase in &, and thus is a surface wave, The displacement field of this wave has
singularities only on the surface 2=,

The u,,wave, Investigation of the displacement field wu,, differs little from the
preceding studies, Under conditions |ny,| < bv or bz <t Y b*? — 1 the compon-
ents ¢, and W,, are given by Expressions

(o]

b ¢ . dk ib dk
Wy = — Ag [Im %%71%5 8in ko, + Tt Re ;—25%8 coskmw—k—]
ko ko
U = — V02— 1w, (3.6)

Ay = [rp Vourf, (o)), Ogp =1 — vt + 2 Y b2 —1
On the conical surface 42 (Figs, 3 and 4)

vt=r+ Vb — 1 3.7

which makes an angle B; = sin (bl)).l with the surface 2= OQthe functions (3 6) posses a
singularity,

The character of this singularity is dg&ermined by the relationship of the source velo-
city U to the velocity of propagation @ ~. If » > a1, then Rela (ibv) B! (ibv)] = 0,
and the functions (3, 6) execute jumps A2 (Fig. 3) on the surface (3 7).

In the case o~! < v < b~ the quantities @ (ibv) R™! (ibv) will be complex, and the
components in (3, 8) will have jumps as well as logarithmic ringularities A0 (Fig. 4) on
the front (3,7), Inthe case bzt V1 — b%?, corresponding to the condition
[Ny | > by, the u,, wave is a surface wave, exponentially decaying with depth.

Longitudinal wave ug,. The components g, and wpy, of the vector u,, are
given by the relations
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for bv <|Mpol

Vlﬂnw) l,:,m :: sinkoy,

weo = | 0 (Tipo) | Ipo (3.8)
for bv > | Npo|

. g(\]m) Apg °§ ¢os kmpo i
Gpo = ]/’bzvz — Mo 2
Wpo = | & (Mpo) | gpo (3.9)

The following expressions have been introduced in (3. 8) and (3 9):

Agy = (MR (o) VT Tp (g) |17, ©pp =7 — @YV 8 — a2 (3.10)

It is easily seen that the expressions in (3, 8) and (3. 9) become singular only on the
sphere 12 g2 = g2 (3.11)

In order to examine the properties of the field in the neighborhood of the sphere (3, 11),
we introduce the angle @ = sin l(ai"t 1) =tan* (rz 1), at which the ray originating
at the point (7,2) of the sphere is propagated, In view of relations (3 8) and (3 9), the
field of the vector uy possesses on the front (3, 11) BF(Fig, 3) and CG(Fig 4), jump
type singularities, when sing < {ev)™ and 5 (' (Fig, 3), logarithmic singularities, when
sin @ > (av)™?

Transverse wave U,. The approximate relations for the components g,, and
wy, of vector w,, are given by

sin ko, dk DSO cos kmmdfc (3.12)

w$0==~—Am[BeB.OS ———1Im By,

% ¥

g = — | B (Ns0) | Wso» W =T —b1ye —-pA

Ao =2 VIR M I B = o (o) [R (n0) x (o)1 (3.13)
The right-hand sides of (3, 12) possess singularities on the sphere
’2 g2 = R (8.14)
The trace of the sphere (3, 14) in Figs, 3 1o 5 is given by the arc FH To find the
character of the field in the neighborhood of the sphere (8 14), it is convenient to intro-
duce the angle ¢ = sin tore™ ) =tan * (7@ > ). at which the ray originating at the
point (7°,2) of the sphere propagates, The singularity of the vector u,o on the sphere
is determined by the angle ¢p, which is related to the saddle point s by Eq,
siny = [ne™" In case siny <y and siny < (bv)"1(Fig. 3, DH ; Fig, 4, FH) , the value
of By {sreal and the functions (3. 12) have jumps on the sphere (3 14).
If 9> sing > (bv)! (Fig. 4, DF), By is imaginary and the singularity at the
front is logarithmic, Finally, for siny > y (Fig. 3t05, £F'), By s complex and
the function in (3, 12) have both jumps and logarithmic singularities at the front,

©
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Head wave u,,. The field of the displacement vector u,, may be represented

as —————
A, z VI-72\ dk - N
Wey = Vi § cosic( - ~——&T ) - v<ah BREY

A 00 R
Y t 1 —2 dk - 9 1p
Wey = .V'm S sin k r——T__z_l/-_T_l)F (U>(l I) (3‘1())

Ay =27 [npg® (iv™) £, lT—l) i (YOI gy = — 17! Vmgw-w (3.17)
On the basis of relations (3, 15) and (3, 16) it is easily seen that the vector field u,,
(47Z) is continuous and that the first derivatives of the vector u,, (for example,
the velocity wu,, ) have singularities on the conical surface
ar+ bz 1 — 92 = ¢ (3.18)
which make an angle y; = sin Y with the 2-axis, On the surface (3 18), the vector

W, has a jump (Fig. 4,5, CF) for » < a’! and logarithmic singularity (Fig, 3,
CE)for v>a™t.

The wu, wave isrepresented by intagrals of the type
o

S exp [+ ik (b1 —7) —kz Y1 — 72| dk
2

(3.19)
ko

This wave, just as the u,, wave for v < a7, is a surface wave, The singularities of
this wave exist only on the circle dr=t, 2=0i(Fig.3 to 5, 7). Since the u,y wave has
a stronger singularity on this circle, the uy, wave is of no interest.

The Rayleigh wave ug = uyp + uU,p, is composed of longitudinal (u,r) and
transverse (u,g) parts, and, unlike the other waves, it may be evaluated exactly,

Omitting intermediate expressions, the relations for the components gg and wg of
Up are: an = Ap [g3(1_ achois—}-IvRtsinlpT)_
ry vnz---v2 T, A

_ hRBH(1_Bchos¢|+vRtSin\p1)]

'Tl‘/i
apA cos .
wp = VvZTf-—v_ﬂ [ R TT‘/: -—20(;13:1} (v <vp) (3.20)
- Ap _astinq)Y—vRi cos y,,
ey {1t

T,Ya
apAp sinap.r sin ¥,
WR = — —2
R »P—yppt [ " Twl/' T @>vg) (3.21)
In the above equations, we have introduced the symbols
vp = tpb™", ar = a(ivr), Pr =P (itr), &r = g (itr)
= (Br*2* + 1 — va’P) + 4Pp*2Por®, ¢y = apPr! + VPrort — g
= (GREZZ + r:— Utha)2 + @anzvggﬁ, AR = (2[)00?)3)“1 (3.22
. 1 . BRzzt + 7% — szte N 1 ) aRa,a +r2 —-v"‘ﬂtﬂ
V=g 2Bpzvgt S chaivaiat 2agzvgt

— 2ag8g (1_ ansmwl—vntcosw”
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Formulas (3, 19) and (3, 20) define the field of the Rayleigh wave, provided the in-
equalities Tr < |Np1|, Tr <|Ma| are satisfied, or

az (1 — a®vp?®)™: < t, bz (1 — brog?y™n <t (3.23)

If the first inequality in (3, 23) is not satisfied, the first terms in the square brackets in
(3.20) and (3, 21) should be set equal to zero, If the second condition in (3 23 is not
satisfied, the second terms in the square brackets should be set equal to zero,

Examination of (3,19) and (3.20) shows that ¢z and wpg stop being continuous only
for 7, =0 or I =0. Utilizing the explicit forms for 77 and 7, we conclude that the
Rayleigh waves have singularities only on the circle Y

r= vgt, z= 0 (3.24)

To determine the character of this singularity in (3, 19) and (3. 20) we must set 2= 0
and examine ¢p and wg on the circle r = vpt. For v == vy both components gp
and wp have the same type of singularity, For example, when 2= (Q we obtain

apApTR?

'R =& V(j: vp? F 02) (£ vttt F 1)

u (r<sopt, vSvp)

wp=0 (r>vgt, v<vg), wp =0 (r<ovpt, v>vp) (3.25)

It follows from (3. 25) that the components in (3. 19) and (3. 20) have singularities of
the form  r= vpt  and Re (vgt — r)™* at Re(r — vgpt)™"

Fig, 4, Fig. 5.

4, From Formulas (3, 3), (3.6), (3. 8), (3.12), (3.15), (3.16), (3, 19), and (3, 20),
diagrams have been drawn showing the location of the fronts (Fig. 3to 5_{ for the principal
parts of the displacement field u as a function of the velocities @ 1, b~ and 4

The results of the investigations concerning the character of singularities at these
fronts are also illustrated in Fig, 3t05, The surface of jumps in y is shown in Fig. 3
o5 by a continuous, heavy line, The front with a logarithmic singularity is shown by a
heavy, broken line. The surface on which the field y has both jump and logarithmic
singularity is shown by a dotted line, The front with a continuous field y is shown by
a thin continuous line in the case of a discontinuous velocity y and by a thin dotted line
in case y has a logarithmic singularity,

Upon examining Fig. 3to 5, we conclude: 1) On the fronts of the u,,, u,,, Uy, and Uy,
waves, the displacements y have jump type and logarithmic type singularities; 2) on the
front of the head wave u,, the displacement field is continuous, but the velocity pos-
sesses jumps or logarithmic discontinuities; 3) on the forward fronts, the displacements
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have only jumps; 4) jumps and logarithmic discontinuities are observed simultaneously
only on those segments of the wu,, and ug,, fronts which propagate to the rear of the
u,, front,

On the basis of the previously obtained relations, an explanation may also be given of
the character of attenuation taking place for the principal parts of a field along a ray.

For this purpose, Expressions in (3. 3),(3. 6), (3. 8), {3.12), (3 15) and (3 16) may be
written, as in [6], in the form

Li(r,2) @ (@ r, 2) + L, (r, )y ({, 1, 2) (4.1)

Here, @; ({ = 1, 2) represent integrals over the range [#k,, o), while /, re-
present the coefficients outside the integral signs.

It is easily seen that the quantities @, determine the form of the waves in the frontal
neighborhoods, whereas the /; determine their intensity, Along a ray, the form remains
un_(J:-hanged, but the intensity decrease for up,, g, Upo anslz uso waves is proportional to
¢ *. while for the head wave u it is proportional toZ ~. For Rayleigh waves, we
will examine the attenuation with time ¢ on the circle r = vpt, z = 0. From (3. 25),

® = Re (r — vp)7 ° or @ = Re(vyt — )~
while the intensity / decreases in proportion to ¢

Let us compare waves u(¥) produced by a moving source (1. 1) with the displacements
u(Q ) and u(w) resulting from stationary sources (1, 8) and (1, 9). The displacement
fields w O ) and u(*™) as well as the investigated field u(V) are given by the relations
(2. 3) and (2. 10), and approximate expressions for the vectors

Uy, Ugy, Upy, Up, Wy = Uy, + Uy,
may be obtained by the same methods as in the case investigated.

However, noting the simple relations between the sources (1. 1), (1. 8) and (1. 9),
Formulas for ue(0), wo(ee), uy (0), u, (o), up (U) and uy (o) are easily written by
utilizing the relations (3. 8),(3. 9),(3.12), (3. 15),(3. 16), (3. 20) and (3 21). In fact,
formulas (3. 8),(3.12),(3. 15), and (3, 20) for U~ ( determine the vectors ugo (0), uge (0),
ug., (0) and up (0). If the right-hand sides of (3. 9),(3, 12), (3. 16) and (3, 21) are multipl-
ied by U, and the products are subjected to a limiting procedure for U~ %, we obtain

7] For Expres.sions for  upo (o?),' g (00}, and u . (o°) up (o0}
L > Equations for the remaining vectors ugp (0), up, (o0) and
L7 u,, (0) (u, (00) = 0) are obtainable in an dementary way,
i but these vectors are unnecessary. Based cn studies of the
_- Y, vector fields u(J) and u(®), we may obtain the fronts, the
JRe character of singularities at the fronts (Fig. 5, u(0) ;
Fig. 6, u(®)) and attenuation along rays.

If the principal parts of the fields produced by the sour-
ces (1, 12) and (1, 13) are known, then we can determine
the vectors li,g (7), Wy (), Uy (v) and ug(v) for the
case of a moving source (1,1), This probiem is solved by the relations

Fig, 6.

(1 — a?sin? @)™ *u,(0)  (avsing < 1)
oo (V) = { asin @ (a?v2sin? @ — 1) " Fuy (00)  (awsing>1)
0 (4.2)
(1 —b22sin?P) " "u,y (0) (b sinp < 1)
bsin P (P22 sin? P — 1) ug (o) (businp>1)

uw(u)={
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( (1 —ay) ™ tu () (er <)
® vty - 1 .
el { a(utvr - )7 P, (00) (av > 1)

vh (rH?——v")J*uR(O) (v <vg) (4 3)
up (1) = { Sl ’
(v? — vR?) Fup (o0) (>rp)
which are based on (3. 8),(3, 9),(3. 12), (3. 15),(3. 16),(3. 20), and {3. 21), Upon examin-
ing (4. 3), we find that the head and Rayleigh waves for a moving source are equivalent,
except for a factor, to the correspondingly named waves in the case of stationary sources
(1.8) and (1, 9). For the longitudinal wave u,,(2) and the transverse wave U(?)
these waves are only locally equivalent to the comesponding waves ugo (0), u,, (o0),
ug (0) and uy, (o0). Moreover, the wave pattern at the fronts of u,q (v) and (),
is different in its dependence on the relationship between the anlgles of propaganon
¢ and { and their comesponding limiting angles sin (av) and sin ( ZD)
5 Now let us examine the case in which the source velocity U and the propagation
velocities a "t b and v coincide,
It v=q " , the displacement field u is given by (1, 5) wherein (1. 6) is replaced by the
following relations
W = ”l (ge ks — 2ekeB), () = ;‘E_" (g% — 20Bck28) (5.1)
Examination of the field (1, 5) and (5, 1) shows that the location of the fronts in this
case is given by (3.11),(3, 14),(3.17) and (3, 23), while the character of the singularities
at these fronts is as illustrated in Fig, 5, Approximate expressions for ugo (a™), ug (a™)
and uy (271} are obtained from (3, 8), (3, 12},(3.21),(4.2) and (4, 3) for =@ L with
regard to the ug(v). wave,its intensity as a function of U has a singularity which is
related to the coincidence of the w,, and us, wave fronts. The wave represent-
ed by the vector u, {a™Y) -} ugy (@), has the same form in the fronial neighborhood
(3. 18) as the head wave, The intensity of the wave u, {a™Y) + ug, (@) decreases
along a ray in proportion to te. Thus, the location of the fronts, the singularities at
the fronts and the wave attenuation along rays in the case of coincident velocities
(V=a ") are the same as in the case of a fixed source ( U = (),
If the Eq. D = bt holds, then the displacement field u is determined from (1, 5) and
from the relations

a —kzo ¥4 ____i__ ~kza ____ ~kz
W= 5B e —2%). Q= g(gete —20fek?)  (5.2)

As in the case U = a,-l. the vectors upo (67), ugo (67), u,, (67%) and up (b71) will re-
present the principal part of the field u: the fronts are determined from Egs, (3. 11),
(3.14),(3.18) and (3. 24), and the singularity types are as shown in Fig. 5. Since Egs.
(3. 8),(3. 12),( 3. 15),(3. 24),(4. 2) and (4. 3) may be used for the determination of the
vectors, the reduction of intensity along a ray will be the same as for U = Q

For v = ug. a study of the waves u,, (vg), u,, (vg) and u,,(vg) by means of
relatjons 3. 8), (3,12),(3, 15),(4. 2) and (4. 3) yields nothing new. Of greater interest
in the case of » = wp.are the u, and ug waves. If ¥ = vg, then both of these
waves must be examined jointly, and the asymptotic evaluation of the integrals along
the contours A, and 2, must take into account the proximity of the poles -+ iTg
to the branch points - ibw.

If the method of steepest descent proposed by V, A, Fok is used and the results thus
obtained are subjected to a limiting procedure for v — vj, we obtain the approximate
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9r¥, exp (—koz,) - P ; gy
qpq";'qpnz-— Zp2+Rlz B [Z,‘n COS(’CQR1+ .—22-)*_1?1 sin\k0R1+4m?:?i)}
2apBpB, exp (— Foz,) P P,
Qo+ 9:r = TR {Zs cos (kufty + 5" | — Ao sin (fofs + ") 1
aRgRBp exp {— kpz_) . P P
an + wa == sz T R? 2 [Zp sin (koR; -+ “2£> -+ R, cos (koﬁi -+ ‘“ég-)-]
20,8, exp (—koz ) ¢ P P
w,, +wp = — ZiTRE lZs sin (kof?l + —f—~) -+ R; cos (ko}21+ «2_.3_)]
(5.3)
wherein
VT 2 4 b2y 5z
1 R R
B, = ———— = -1 — == -
V7 deprp Ve Py = apt ' b= Bgt
aty 222 \ 1o by 272 |2
Ap:(tl.r. anz ) y .~]Sx<t2+ BRZ > y ngrvat, Z:p:d'Rz' Zs::BRz

From (5, 3), we find that up -+ u, ceases to be continuous only on the circle (3. 24).
Analysis of the Expressions (5, 3) in the neighborhood r = vpt, 2 = Oshows that whas
a singularity of the type (r — vp#)™! in the & =  plane, while the component § goes
to infinity like 2 ', on the surface r = vgt. As T increases, the intensity of the wave
represented by u;, + u 1g-TEMAInNs a constant on the circle (3. 24).

The absence of attenuation and the change of form at the front of the wave
u, (vg) + up(vy) are connected with the resonance phenomenon for Rayleigh waves,
which is known from previous studies (for example, [1to3]), This resonance takes place
when the source velocity coincides with the Rayleigh velocity, The variation in in-
tensity for large ¢ is different from that given in [3}, This, however, does not imply any
conrradiction, Indeed, for large ¢ the relation between the Rayleigh wave intensity in
(5. 3) and the source in (1. 1) is found to be proportional to 4, This is identical with the
relation obtained by using the results of [3).

Investigation of the cases in which the source velocity coincides with the propagation
velocities thus shows that resonance will occur only for the Rayleigh surface wave when
v = vp. This is not surprising since the source (1, 1) which is being investigated is of
the surface type, To obtain resonance for a volume wave uy,, the source must be app -
lied Qger an expanding sphere or hemisphere and the pertinent velocity equation i3
D=g".

BIBLIOGRAPHY

1., Craggs,1, W, , Two-dimensional waves in an elastic halfplane, Cambr, Philos,
Soc, , Proc, , Vol, 56, 1960,

2, Dang Dinh Ang. Transient motion of a line load on the surface of an elastic
halfplane, Quart, Appl. Math,, Vol 18,1960,



Vibrations of an homogeneous elastic half~-space 243

Gol'dshtein, R, V,, Volny Releia i resonansnye iavleniia v uprugikh telakh
(Rayleigh waves and resonance phenomena in elastic bodies). PMM, Vol, 29,

No, 3,1965,

Ogurtsov,K, I, and Petrashen', G, I,, Dinamicheskie zadachi dlia
uprugogo poluprostranstva v sluchae osevoi simmetrii (Dynamic problems for an
elastic half-space with axial symmetry), Uch, zap, Lenigra. /Univ. No, 149, 1951

Petrashen’, G, I, and Uspenskii,I, N, , O rasprostranenii voln v sloi-
stoizotropnykh sredakh (On the propagation of waves in laminated isotropic
media). I, Uch, zap, Leningr, /Univ, No, 208, 1956,

Petrashen’', G, I, , Elementy dinamicheskoi teorii rasprostraneniia seismicheskikh
voln (Elements of the dynamic theory of seismic wave propagation)., Izd. Leneigr.
Univ, Vol, III, 1959,

Fadeeva, V, N, and Terent'ev, N. M., Tablitsy znachenii integrala ve-
roiatnostei ot Kompleksnogo argumenta (Tables of Probability Integral Values
for Complex Argument), Gostekhizdat, 1954,

Translated by H, H,



