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The study is concerned with the propagation of elastic waves produced by a moving 

source. This topic has been the subject of a series of papers, e. g. p to 33. In contra- 
distinction to the above cited works which study the effects of a moving point source, 
the present investigation deals with the effects of a source applied to a uniformly ex- 
panding circular region on the boundary of an elastic half-space. The resultant dis- 
placement field is divided into components corresponding to longitudinal, transverse, 

head, Rayleigh and other waves, Each of these waves is investigated in the prefrontal 

regions, and the connection between the character of the singularity and the relation- 
ship between the velocity of propagation and the velocity of the source is explained, 

The results obtained for the field of a moving source are compared with the cases of 

point and distributed stationary sources. 

In contrast with fl to 33, where the velocity of source motion is assumed to be lower 
than the velocity of propagation of Rayleigh waves, herein no limitations are placed on 

the veracity of motion. In studying the field, particular attention is paid to the cases 
in which the velocity of the source coincides with the velocities of propagation of 

longitudinal, transverse and Rayleigh waves, If the velocity of motion is equal to the 

Rayleigh velocity, resonance of surface waves takes place. Thereupon, the Rayleigh wave 
changes form and propagates without attenuation. If the velocity of motion coincides 
with either the longitudinal or transverse wave propation velocity, the form and arten- 

uation of the waves retain the same character as in the case of a stationary source. 
1, Consider a cylindrical coordinate system r@Z in a homogeneous elastic half- 

space z > 0, characterized by density p and Lam; constants x and W. The region 
is at rest at t < 0. and subjected from the time $ = 0 to the action of a source applied 
to a circular region which is uniformly expanding with time and for which 7 := 0 fi 
and a= 0. The loading due to this source is given by the relations 

t,, z ___ o;cr.-rvt, F ([) ‘ t,, .=I &fzO zzz 0 for 2 _= 0 (1 .I) 

Here 1,,, tzs and t,, are components of the stress tensor, D is the velocity of the 

motion of the source, and 6(x) and c (x) are the Dirac and Heaviside functions, respect- 

ively. 
The resultant displacement field u = qr, f wk, is defined by the known Lam: Eqs. 
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p@u / W = (A + 2~) grad div u - p rot rot u w 

with the initial conditions 

tt = U’ = 0 for I Z: 0 

The boundary conditions are given by 

The solution of the problem formulated in (1.2) to (1.4) kay be obtMncd. as in 
[4 and 51, by means of Fourier-Bessel and Laplace transformations. We omit intermedia- 

ate formulas, and write merely the end results 

w _ ’ Jo (kr) dk Otloo - s 2ni s 1y (k rl) exp Tdq 

0 a-icn 

Q= 
’ JI (kr) dk 

o+ica 

s 2ni S Q (12, q) exp 7 dq 
0 o-i03 

(1.5) 

FIT = --&- (ge-kza - 2e-krB), Q= -&- (ge-kza - 24k9 (1.6) 

a =- 7/i + pq2, P = 1/f + q29 x = J&p + b%P, g=2+v 

R = g2 -44x13, a = f/p (h + 2p)--‘, b = I/pp-l , 7 = ab-l (1.7) 

which define the displacement vector U In order that the radicals X, p and Ube 
single -valued, branch cuts originating at the branch~points + ibu, -& j and + iv-l 

are introduced in the left half-plane, and the values of the radicals are fixed by the 
conditions% > 0, /3 > 0 and a> 0 for q > 0. 

Before proceeding with the investigation of the solutions (1.5) to (1.7), let us obtain 

the displacement field in the same half-space for two other types of sources 

t,, = - $k (t), t,, = t,s = 0 for Z = 0 (1.8) 

t,, = -M. ) t,, = tzo = 0 for 2 = 0 (1.9) 
It is readily seen that the first’of the above sources represent that particular case of 

(1.1) for which the vetocib of motion is zero. Hence, the displacement field produced 

by the source (1.8) is given by Formulas (1.5) wherein 

LI,’ = $(ge-kza_2&-"..3), Q = ---&(g~kza-~~~~k*B) (1.10) 

To obtain the displacements resulting from the action of (1.9) we need merely note 

the relation 

!I.@. = lim 
[ 

6 (P - vt) V8 (t) 

r 
v-r03 

r 1 (1 Al) 

between the functions defining the sources in (1.1) and (1.9). Utilizing (1.11). we find 
that the desired dispIacements are also expressible by (1..5) wherein 

1.1’ = j& k?e-‘=a - 2e-‘*‘9, Q = &. (ge-ksc _+&_kL~) (1.12) 
The displacement field (1.5) and (1.10) for a st&onary point source (1.3) was ex- 

amined in detail in [4]. using exact and asymptotic methods, Similar methods rnrjt be 
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used to study the displacement fields (1.5). (1.6) and (1.12) for a moving source (1.1) 
and a stationary distributed source (1. 9). Since the field of a moving source is of great- 
est interest, our attention will be mainly directed to its investigation. -In addition to ex- 

amining the influence of the source motion on the propagation of longitudinal, transverse, 

head and Rayleigh waves in the half-space, we will also study waves which propagate 

with the velocity of the source, 
2, To investigate the displacement fields (1.5) and (1.6) let wand $ be written as 

W = Wpe-kza + W@~~, Q = Q+-RZQ + Q,+tP (2.2 j 

where, from (1.6), 

w, = -%- , 
PRK 

Ws=_2cL 
pRx ’ Qp=&, Us=-% (2.2) 

Corresponding to the decomposition of functions in (2.1) into two components, we will 
write the field u as the sum 

u = up + u, (2.3) 

Here the components ql and LL’~ of the vector ul (1 = p, s) are given by 
cfio3 

z.!Jl = 
03JO(kr)dk i 
5 2ni \ 

W exp IM h1)1 h (2.4) 
0 o&x 

91 = 
‘=” .I1 (kr) dk 

a+im 

I 2ni s 
QZ exp Pfl WI dr7 

CI-im 

fppi1) =kjb--zs, f&l) = Wb---zp (2.5) 

The quantities wL and qt will be studied by asymptotic methods. The inside, Meliin 

integrals will be evaluated by the method of steepest descent in the region t> a2 

(I = p) or t > bz (I = s), where the integrals are not identically zero. 

In this connection, let us examine the stationary contours h, and & of the phases of 

functions (2.5). The contours h, and h, pass through the saddle points 
--& it 

fQo= rJf/tgz-&3 ’ P-6) 
satisfying the conditions 

Im fl (rl) = Im f2 (3~ W_, RefhKRefdiktd (2.7) 

intersecting the imaginary axis at the points 

and possessing symmetry with respect to the real axis. Possible arrangements of station- 

ary contours in the upper half-plane are shown in F%gs. 1 and 2. 
In order ro go from the Mellin contour in (2.4) to the stationary contour A, it is nec& 

essary to examine and take into account the singularities of the integrand in the region 
between the two contours. In that region, there can only be the branch points 

+ i, It ir-1, + ibuand the poles + in,,! satisfying the Rayleigh equation j?=O. 
It is easily seen that the noted singular points fail to fall in the region between the two 

contours only if they are located on the imaginary axis between the points ~16 and r)ll. 

Thus, in passing from the Mellin contour to the stationary contour it is necessary to take 

into account singularities at the point t i, ~~I- zy -i- -I, & ibv and + iz, if these lie out- 

side the interval (f qll, + rllo) on the imaginary axis. These singularities are taken 
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into account by evaltiting the residues and the integrals along the branch cuts_ In order 

to utilize the method of steepest descent in evaluating the integrals, we introduce branch 
cuts from the points -1: i, + iy--l and + tbv, along the lines 

Imf2 (11) = Im fl (t 9, Im fr (q) = lm fr (+ W’), Im ft (q) = Im #i (+ ibv) (2.9) 

in the left half of the ?J - plane (Figs. 1 and2). For .convenience, the contours encom- 

passing these cuts will be designated by hrl, h,, and h,, respectively. Based on these 
investigations, the displacement fields 12.4) and (2.2) may be rqesented by 

np = npU + up,, + npy + npn’ us = u,v + %,, I- %I -+ %R (2.10) 

where the components of the vector fit,, urs, uPY,’ uS1 and qR may be expressed in 

terms of Fourier-Bessel integrals obtained from the integrals along the respective contours 

hlvl AI, $.JYl &I and from the residues at the point + iTR. Here we should note that 

the vectors uiU3 uPY, uSI and uzR vanish if the corresponding singularities f ibv, 

+ iy”‘, $-i and +iTn .- lie inside the intervals (-I- ~1, -!I 740) on the imaginary axis. 

i 
1 

@ 
I 

Fig. 1. Fig. 2. * 

3, In order to investigate the singularities of the vector fields qOr uPo, uPY and 

us1 let us divide the range of integration with respect to k into two intervals: 10, k, 1 
and [!I& ,d. Since tlxe integrands in the integrals along the contours A,,, AR, & and 
h are regular functions over the interval [o, k, "j. integration over the finite interval 
&T,] is of no interest. All singularities of the vectors uIy, uzO, uRy and urr will 

be contained in the integrals over the range Ike ,w). 
that 

The value of Jq, must be chosen 

JEor> 1, /C&-l > 1 (3.1) 
Under these conditions, the Bessel functions J, (ko and C& (h;r ) may be replaced by 

their asympotic forms 

JR (kr) - v’2 / slkr cos (kr - ‘i’gm - f/43c) (=I 
and the integrals along h tV, AlO, I,, and A,, may be evaluated by the method of steep- 
est descent. Application of these methods to the evaluation of expressions typified by 

UZV, uro, % and upI is described in detail in [4 and 51, Hence, we will confine 

ourselves here to obtaining the leading asympotic terms in the nonanalytic portion of 
the field in the neighbourhood of the front. 

T h e up0 w a v e . The components qpv, wki of the vector upv under conditions 
!qpoI<bv or z < t(n are given by 

co 

Qpv = 
g WV) sin k (r - vt -+ a t/&P - 1) 

npR(iba) ~fwrfp’ (ibv) k dk 

(3.3) 
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and have singularities only on the surface 

2’1 

f d ut P 

= qh2v2 - 1 + r (3.4) 

Fig. 3. 

has a jump equal to 6 at x; a 

If one of the relations Iv P1 I> b. I or 

nz<td 1 -uv 
is satisfied, then both components qPp,, and u’Pa are 

represented by integralsMof the type 

This conical surface makes an angle CQ = sin -’ (a+ 
with the plane a= Q The trace of the surface is repre- 
sented in Fig. 3 by the segment m. In passing through 

the surface (3.4), the displacement components (3:3) 
experience jumps, so that the integral 

CO ., 
‘# 

I 
dk 

sin kx k 

?f. 

_~ 
3 

I 
ko 

CXP jik (f - vt) - kz 1/l - a’W] $ 

which differ from the integrals in (3.3) by a factor exp (- /c.z 1/l - a%‘?. As a result 
of this factor, the wave represented by the vector up*,, is attenuated exponentially with 
an increase in 8, and thus is a surface wave, The displacement field of this wave has 

singularities oniy on the surface Z= 0. 

The u,,,wave. Investigation of the displacement field us0 differs little from the 
preceding studies. Under conditions 1 Q, 1 < bv or bz < t vm the compon- 

em qm and wAn are given by Expressions 

A, = [q I/burf8’ (ibv>]-l, %v = r-utfqf- 

On the conical surface AD (Figs, 3 and 4) 

vt= r + zvb2v2 - I- (3.7) 

which makes an angle fll= sin (bV )-I with the surface g= 0 the functions (3 6) posses a 

singularity. 
The character of this singularity is dtiermined by the relationship of the source velo- 

city V to the velocity of propagation CZ . If u > a -1, then Re[a (2~) R-1 (ibu)] = 0, 

and the functions (3.6) execute jumps 0 (Fig. 3) on the surface (3 7). 
In the case u-1 < v < b-l the quantities a (2~) R-l (2~) will be complex, and the 

components in (3.6) will have jumps as well as logarithmic cingularitiesAD(Fig. 4) on 
the front (3.7). In the case bz < t vi - bW, corresponding to the condition 

I qsl I > h the ~8, wave is a surface wave, exponentially decaying with depth. 

Lo n g i t u d i n a 1 w a v e up,,. The components qpo .and wpO of’the vector up0 are 

given by the relations 
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The following expressions have been introduced in (3.8) and (3 9): 

It is easily seen that the expressions in (3.8) and (3.9) become singulat only on the 

sphere 7’2 + 2s = a-v (3.11) 
III order to examine the properties af the field in the neighborhood of the sphere (3, ll), 

we introduce the angle cp = sin-‘(a?? 3 = tan-’ (Fz-‘)~ at which the ray originating 
at the point (Y.2) of the sphere is propagated. ln view of relations (9 8) and (3 9), tha 
field of the vector up0 possesses on the front (3-11) &&Fig, 3) and @(Fig 4), jump 

type singularities, when sin q < (a~)-’ and B c (Fig, 3), logarithmic singularities, when 
sin ‘p > (a+- 

Transverse wave uIO. The approximate relations for the components qlo and 

w,@ of vector u,~ are given by 

Gil = - IB hsiJ\lv,,, 0, = r - b-1 y-- 

40 = 2 bqA I/f 1 f,” (q&J Ii-5 Bs@ = a (%I) [R (bl x (v#o~ 1-l (3.13) 
The right-hand sides of (3.12) possess singularities on the sphere 

rs + 2s = b-sta (3.14) 

The trace of the sphere (3.14) in Figs. 3 to 5 is given by the arc F& To find the 

character of the field in the neighborhood of the sphere (3 14). it is convenient to introc 

duce the angle Cp = sin-&? “) = tan-’ (7%’ ), at which the ray originating at tbe 
point (r,z) of the sphere propagates. The singularity of the vector SO on the sphere 
is determined by the angle cp, which is related to the saddle point SO by Eq, 
sin Ip = 1 qsO-‘. In case sin* < y and sin* < fb~)‘~(Fig. 3, BFf ; Flig, 4, .&& I the vrrlw 
of B,o is real and the functions (3.12) have jumps on the sphere (3 14). 

If y > sin* > (bv)-r (Fig. 4, DE), B,o 

front is logarithmic. 
is imaginary and the singularity at t?re 

Finally, for sin9 > y (Fig. 3 to5, E%), B,6‘ is complex and 
the function in (3,12) have both jumps and logarithmic singularities at the front. 
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Head wave u,,, The field 
as 

w,Y = V&q [cos 

‘4 7 Y 

L. A. Molotkov 

of the displacement vector u,, may be represented 

On the basis of relations (3.15) and (3.16) it is easily seen that the vector field u,, 
(tq) is continuous and that the first derivatives of the vector uBy (for example, 
the velocity u,, ) have singularities on the conical surface 

ar+ bz.l/l - y2 = t (3.18) 

which make an angle ~1 = sin-’ y with the Z-axis. On the surface (3 18), the vector 
u (IY has a jump (Fig. 4,5, 6%‘) for v < df and logarithmk singularity (Fig. 3, 

C!Z) for v> a-l. 

The up1 wave is represented by integrals of the type 
00 

s exp [ f- ik (tb-1 - r) - kz v-1 IS 

ka 
k. 

(3.19) 

This wave, just as the- up0 wave for u < a-1, is a surface wave. The singularities of 

this wave exist only on the circle b?“= 6 I=&Fig. 3 to 5, F). Since the U,O wave has 

a stronger singularity on this circle, the up1 wave is of no interest 

The Ray 1 e i g h w a v e un = UPR -j- ua, is composed of longitudinal (upR) and 
transverse (&,R) parts, and, unlike the other waves, it may be evaluated exactly. 

Omitting intermediate eXpreSSiOnS, the relations for the Components gR and wn Of 
UR are: 

qR = ~ V_.?& [ gn (I- aRZCos’rP+,;R tsin q-t ) _ 

--RpR Ii-- 

( 

~Rzcos~~+tlgtsin~~ 

d % 

WR = 
aRAR 

If------ 
OR% - vz 

[ 

ms lb, 

gR v- 
ps% 

3 1 P < VR) 
qR = - 

--RPR I-- 
( 

PRz sin $I- vRt cos 91 

T1’J’ 

wR=- f-s 
sing * 

gR+--2’* 1 (‘> vR) 
In the above equations, we have imoduced’the symbols 

@R = TRb-‘, aR = @Rh BR = fi &RI, gR = &? (i%R) 

(3.20) 

(3.21) 

T, = (fh?Z* + 9 - v#)’ + ‘@&%‘Rata, c~ = aR/jR-’ + yapR UR-l - g, 

T-f = (aRgz2 + ra - uRata)’ _t hR%%R*t2, AR = (2pc## (3.22 

,j,1 _ 4” _ f un_I ,pR2z~R~v-/P , 9y _ 4” ; ~_, aRaza + ” -vaRt2 
2aRzeR t 
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Formulas (3.19) and (3.20) define the field of the Rayleigh wave, provided the in- 

equalities TR < 1 qpl 1, z~ < 1 qsl 1 are satisfied. or 

az (1 - &$)-1/2 < t, bz (1 - .!hR2)-‘/2 < t (3.23) 

If the first inequality in (3.23) is not satisfied, the first terms in the square brackets in 

(3.20) and (3.21) should be set equal to zero, If the second condition in (3 23 is not 

satisfied, the second terms in the square brackets should be set equal to zero. 
Examination of (3.19) and (3.20) shows that qR and ZLQ stop being continuous only 

for r, =o or y,, =o. Utilizing the explicit forms for rl and T , we conclude that the 

Rayleigh waves have singularities only on the circle 
Y 

T = 2iRt, z= 0 (3.24) 
To determine the character of this singularity in (3.19) and (3.20) we must set ,?= 0 

and examine qR and wR on the circle r = vRt. For v # uR both components qR 

and wR have the same zype of singularity, For example, when z= Q we obtain 

w J{=O (r>v& v<vR), w,=o (r<v& v>vR) (3.25) 

It follows from (3. 25) that the components in (3.19) and (3.20) have singularities of 
the form ?.= L’ Rt and Re (uRt - r)-‘I’ at Re (P - vRt)-‘/‘. 

Fig, 4. Fig. 5. 

4, From Formulas (3.3). (3.6), (3. 8), (3.12), (3.15), (3.16), (3. 19), and (3.20), 
diagrams have been drawn showing the location of the fronts (Fig. 3to51for ?he principal 

parts of the displacement field u as a function of the velocities U-l. 5 and Y 

The results of the investigations concerning the character of singularities at these 
fronts are also illustrated in Fig. 3 to 5. The surface of jumps in u is shown in Fig. 3 
to 5 by a continuous, heavy line. The front with a logarithmic singularity is shown by 
heavy, broken line. The surface on which the field u has both jump and logarithmic 
singularity is shown by a dotted line. The front with a continuous field u is shown by 

a 

a thin continuous line in the case of a discontinuous velocity u and by a thin dotted line 
in case u has a logarithmic singularity. 

Upon examining Fig. 3 to 5. we conclude: 1) On the fronts of the up,,, u,,, up0 and u, 
waves, the displacements u have jump type and logarithmic type singularities: 2) on the 
front of the head wave u,, the displacement field is continuous, but the velocity pos- 
sesses jumps or logarithmic discontinuities; 3) on the forward fronts. the displacemenrs 
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have only jumps; 4) jumps and logarithmic discontinuities are observed simultaneously 
only on those segments of the u,, and u,;., fronts which propagate to the rear of the 
u SY front. 

On the basis of the previously obtained relations, an explanation may afso be given of 

the character of attenuation taking place for the principal parts of a field along a ray. 

For this purpose, Expressions in (3. 3),(3.6).(3. 8), i3.12), (a 15) and (3 16) may be 
written, as in [S], in the form 

I, (r, 2) a1 (t, r, z) $- I, (r, c) @, (I, r, 2) (4.1) 
Here, Q (i = 1, 2) re resent integrals over the range 1 k,, co), while Ii re- p 

present the coefficients outside the integral signs. 
It is easily seen that the quantities (lji determine the form of the waves in the frontal 

neighborhoods, whereas the 1i determine their intensity. Along a ray, the form remains 

unchanged, but the intensity decrease for upI,, II,,, 
-1 

t 9 
up0 aniz u,o waves is proportional to 

while for the head wave 11,~ it is proportional to fi . For Rayleigh waves, we 
will examine the attenuation with time t on the circle r = uRt, z = 0. From (3. 25), 

CP = Re (r - ~~1)~’ 2 or (I> 7~ ]{e (uRt _ r)-‘/~ 

while the intensity 1 decreases in proportion to t-‘.‘L. 
Let us compare waves u(U) produced by a moving source (1.1) with the displacements 

U( 0 ) and U(W) resulting from stationary sources (1. 8) and (1. 9). The displacement 
fields u( 0 ) and u(“) as well as the investigated field u(U) are given by the relations 

(2. 3) and (2. lo), and approximate expressions for the vectors 
U so7 u SY, Uplr uR, % = upy i- u,, 

may be obtained by the same methods as in the case investigated. 

However, noting the simple relations between the sources (1. l), (1. 8) and (1. 9). 

Formulas for u~o(O), qo(-), u,,(O), u,;,{ (00)~ 11 R (0) and uR (w) are easily written by 

utilizing the relations (3. 8),(3. 9),(3.12),(3. 15),(3.16),(3. 20) and (9 21). In fact, 
formulas (3. 8),(3.12),(3.15). and (3.20) for U-0 determine the vectors up0 (Oj, WJ (O), 

uSY (0) and uR (0). If the right-hand sides of(3. 9),(3.12),(3.16) and (3.21) are multipl- 
ied by IJ, and the products are subjected to a limiting procedure for U-Oq weobtain 

H - 
,‘#C / 

but these vectors axe unnecessary. Based cn studies of the 

/’ 

vector fields u(o) and u(m), we may obtain the fronts, the 
character of singularities at the fronts (Fig. 5, u( 0 ; 

G 4’ Fig 6, u(“) ) and attenuation along rays. 
Z If the principal parts of the fields produced by the sour- 

Fig. 6. ces (1.12) and (1.13) are known, then we can determine 
the vectors bp, (v), uao (v), u,{ (v) and ~(4 for the 

case of a moving source(1.1). This problem is soived by the relations 

u f c J- 

T 

Expressions for up0 (oo), %o (=)I, and u ,JW) uR (mj 

:‘/I 
Equations for the remaining vectors up1 (O), up1 (00) and 

:/ u, (0) (uC (w) sz 0) are obtainable in an elementary way, 
,2 1 

UrN (v) = 1 (1 - a2p2 sin2 cp)-t.’ up,(O) (av sin ‘p < 1) 

a sin cp (aW sin2 ‘p - I)-lip up0 (m) (u2,sincp)l) 
(4.2) 

us0 (4 = 
{ 

(1 - bW sin’ $)-*” us0 (0) (be, sin Q < I) 

b sin + (bV sin2 9 - 1 j-‘.‘l US0 (W) (bu sin $> 1) 
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(4.3) 

which are based on (3. 8).(3,9),(3.12),(3.15),(3,16),~~.2~}, and (3.21). Upon examin- 

ing (4.3). we find that the head and Rayleigh waves for a moving source are equivalent. 
except for a factor, to the correspondingly named waves in the case of stationary sources 
(1.8) and (1.9). For the longitudinal wave 1+(2;) and the transverse wave ~(2~) 

these waves are only locally equivalent to the corresponding waves uPo f(l), uPD (cs)~ 
u,~ (0) and u,~ (zc). Moreover, the wave pattern at the fronts of up0 (v) and u,,( ?I), 
is different in its dependence on the relationship between the an 
v and I$ and their corresponding limiting angles sin’ ( au) 

-8 
les of propagation 
and sin-’ f b)““. 

5, Now_fiet r~;examine the case in which the source velocity U and the propagation 

velocities a ,ib and r‘n coincide, 

ff u=a-I, the displacement field u is given by (1.5) wherein (1.6) is replaced by the 

folIowing relations 
@7= 1 ~ (g(+%. - &+=8), $I zz‘z -& jge-R= - 2&S.?-r@) (5.1) 

Examination of the field (1. 5) and (5.1) shows that the location of the fronts in this 
case is given by (3.11),(3,14).(3.17) and (3,23), while the character of the singularities 

at these fronts is as illustrated in Fig. 5. Ap~roxima~ expressions for “pa I~t-‘). “$0 {a-‘) 

nnd “n (a-r) are obtained from (3.8),(3.12),C$21).(4.2) and (4.3) for LJ= a-IL With 
regard to the u,.,(v), wave, its intensity as a function of V has a singularity which is 
related to the coincidence of the “su and “SD wave fronts. The wave represent- 

ed by the vector “S-C (a-‘) -i- u,, ia-‘), has the same form in the frontal neighborhood 

(3.18) as the head wave. The intensity of the waye “$., (n-1) -t_ II,, (a-l) decreases 
along a ray in proportion to t*. Thus, the location of the fronts, the singularities at 

the fronts and the wave attenuation along rays in the case of coincident velocities 
( 2~ = a-’ ) are the same as in the case of a fixed source ( U = 0). 

If the ECL U = b-l holds, then the displacement field u is determined from (1.5) and 
from the relations 

As in the case V = a-’ , the vectors up0 (bT1), us0 (b-l), u,, lb-‘) and uR (b-l) will re- 

present the principal part of the field u; the fronts are determined from Eqs, (3.11). 
(3.14), (3.18) and (X24), and the singularity types are as shown in Ffg. S_ Since Eqs. 
(3.8),(3.12), ( 3.15),(3.24),(4.2) and (4.3) may be used for the determination of the 

vectors, the reduction of intensity along a ray will be the same as for U = Q 

For ZI = L;~, a study of the waves up0 (uR), us0 ( gR) and u,,( ziR) by means of 
relations {3. 8),(3,X$(3. X).(4.2) and (4.3) yields nothing new. Of greater interest 
in the case of , u = VR: are the u, and uR waves. If u sz ??R, then both of these 
waves must be examined jointly, and the asymptotic evaluation of the integrals along 
the contoUTs h,, and h,#> must take into account the proximity of the poles + irR 
to the branch points -k ibc. 

- 

IF the method of steepest descent proposed by V, A. Fok is used and the results rbus 
obtained are subjected to a limiting procedure for v - [in, we obtain the approximate 
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wherein 
(5.3) 

jj4,p ‘/* 

As = t” + p 
t 1 , R1=r-- 

R 
v& 2, “= URZ, z, = przz 

From (5.3), we find that un -t u, ceases to be continuous only off the circle (3.34). 

Analysis of the Expressions {5,3) in the neighborhood P = uRt, z = 0 shows that w has 

a singularity of the type (I - 
to infinity like a‘-’ 

V&-I in the # = 0 plane, while the component g goes 

, on the surface F = uRt. As & increases, the intensity of the wave 

represented by uIu f uIR, remains a constant on the circle (3.24). 

The absence of attenuation arid the chaqc of form at the front of the wave 

u, (vR) t- uR( uR) are connected with the resonance phenomenon for Rayleigh waves, 

which is known from previous studies (for example, p to31 1, This resonance takes place 
when the source velocity coincides with the Rayleigh velocity. The variation ih in- 

tensity for large 6 is different from that given in [3J. This, however, does not imply any 

contradiction Indeed, for large ti the relation between the Rayleigh wave intensity in 

(5.3) and the source in (1.1) is found to be proportionaf to L This is identical with the 

relation obtained by using the results of [3> 

Investigation of the cases in which the source velocity coincides with the propagation 
velocities thus shows that resonance will occur only for the Rayleigh surface wave when 
u= v R. This is not surprising since the source (1,l) which is being investigated is of 

the surface type+ To obtain resonance for a volume wave up0 the source must be app - 

lied over an expanding sphere or hemisphere and the pertinent velocity equation is 
u =a*“, 
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